## 1 Formula Sheet

Newtons Law of Cooling/Heating:

$$
\frac{d T}{d t}=k\left(T-T_{1}\right)
$$

Useful Trig Identities:

$$
\begin{aligned}
\sin ^{2}(x)+\cos ^{2}(x) & =1 \\
\tan ^{2}(x)+1 & =\sec ^{2}(x) \\
\sin ^{2}(x) & =\frac{1-\cos (2 x)}{2} \\
\cos ^{2}(x) & =\frac{1+\cos (2 x)}{2} \\
\sin (2 x) & =2 \sin (x) \cos (x) \\
\cos (2 x) & =\cos ^{2}(x)-\sin ^{2}(x) \\
\sin \left(\cos ^{-1}(x)\right) & =\sqrt{1-x^{2}} \\
\cos \left(\sin ^{-1}(x)\right) & =\sqrt{1-x^{2}} \\
\sec \left(\tan ^{-1}(x)\right) & =\sqrt{1+x^{2}} \\
\tan \left(\sec ^{-1}(x)\right) & = \begin{cases}\sqrt{x^{2}-1} & x \geq 1 \\
-\sqrt{x^{2}-1} & x \leq-1 \\
\sin (m x) \cos (n x) & =\frac{1}{2}[\sin (m+n) x+\sin (m-n) x] \\
\sin (m x) \sin (n x) & =-\frac{1}{2}[\cos (m+n) x-\cos (m-n) x] \\
\cos (m x) \cos (n x) & =\frac{1}{2}[\cos (m+n) x+\cos (m-n) x]\end{cases}
\end{aligned}
$$

Useful Derivatives:

$$
\begin{aligned}
D_{x} \sin ^{-1}(x) & =\frac{1}{\sqrt{1-x^{2}}}-1<x<1 \\
D_{x} \cos ^{-1}(x) & =-\frac{1}{\sqrt{1-x^{2}}}-1<x<1 \\
D_{x} \tan ^{-1}(x) & =\frac{1}{1+x^{2}} \\
D_{x} \sec ^{-1}(x) & =\frac{1}{|x| \sqrt{x^{2}-1}}|x|>1
\end{aligned}
$$

Some Useful Integral Forms:

$$
\begin{array}{r}
\int \tan u d u=-\ln |\cos (u)|+C \\
\int \cot (u) d u=\ln |\sin (u)|+C \\
\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1}\left(\frac{u}{a}\right)+C \\
\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{u}{a}\right)+C \\
\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1}\left(\frac{u}{a}\right)+C
\end{array}
$$

Series Formulas:
Taylor's Formula

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)(x-a)^{n}}{n!}
$$

Hyperbolic Trig Definitions:

$$
\begin{aligned}
\sinh x & =\frac{e^{x}-e^{-x}}{2} \\
\cosh x & =\frac{e^{x}+e^{-x}}{2}
\end{aligned}
$$

Note: The practice midterm may be a little longer than the actual midterm, but it reflects problems similar in difficulty to what you may encounter in the actual exam.

## 2 True/False

1. For an alternating series of the form $a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ if $a_{n}>a_{n+1}>0$ and $\lim _{n \rightarrow \infty} a_{n}=0$, then the series converges.
2. A series that converges conditionally also converges absolutely.
3. A series converges absolutely in the interior of its convergence set.
4. You can find a Taylor series about any point $\mathrm{x}=\mathrm{a}$ for any function $\mathrm{f}(\mathrm{x})$.
5. For an alternating series if the absolute ratio test give $\mathrm{R}=0$, then the series converges conditionally.

## 3 Free Response

Using the test of your choice determine if the following sequences converge/diverge

1. $\sum_{n=1}^{\infty} \frac{3 n-2}{n^{2}+3}$
2. $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{2^{n}}$

Determine whether the following series conditionally converges, absolutely converges, or diverges.

$$
\text { 3. } \sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}
$$

4. $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n^{2}}$
5. Find the Maclaurin series for $f(x)=\ln (1+x)$
6. Find the convergence set and the radius of convergence for the Maclaurin series found in problem 5.
7. Using the Maclaurin series you found in problem 5 solve for the power series of $g(x)=\frac{1}{1+x}$
8. Find the 4th degree Taylor polynomial for $h(x)=\sinh (x)$ about the point $\mathrm{a}=1$.
